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Abstract—We propose a strategic communication model and
exploit its convergent properties to draw insights on how indi-
viduals influence each other’s decisions. The starting point for
this paper is the so called bounded confidence model in which
agents update their opinions only when they are like-minded (i.e.,
their opinion distance is smaller than a threshold). In our model,
in addition to the existence of trust between interacting agents,
the agents also play a central role in determining how much
effort and time they want to invest in interacting with others.
The strategic communication thus refers to the process that
allows individuals to select neighbors, with whom the interaction
produces a maximization of the local utility functions. Our goal is
to analyze the dynamics of opinion formation under the proposed
communication strategy, with a focus on understanding how and
under what conditions clustering patterns emerge in the opinion
space.

I. INTRODUCTION

How do societies steer individual beliefs and values is, to
a large extent, closely related to the process of information
diffusion in social networks. To understand this process, we
begin with a brief overview of various mathematical models
that attempted to capture the impact of social interactions on
opinion formation. In particular, we restrict our attention to
non-Bayesian models that emerged from the field of statistical
physics [1]. The basic idea is to capture the dynamics of
agents’ opinions by postulating a simple, but still natural, opin-
ion updating rule: agents exchange and update their opinions
by taking a weighted average, if certain conditions are met.
(See [2]–[6].) Interactions between agents are often random
and local while the learning rule is designed to approximate
the resulting change in agents’ beliefs. Models under this
framework have the benefit of giving insights on more complex
network structures, while providing explicit answers to the
dynamics of opinion formation in a social group.

One of the early models in this class was studied by
DeGroot [2]. In the DeGroot model, individuals start with an
initial opinion profile represented by a vector of probabilities.
The update process is captured by a fixed stochastic matrix
T . Beliefs of individuals are updated linearly by taking a
weighted average of their neighbors’ beliefs (Tij are the
weights representing the relative trust that agent i places on
agent j’s belief). Some generalizations of the Degroot model
were investigated in [3]–[7] in which a bounded confidence
was introduced to capture the trust that may exist between
like-minded agents and the belief update is nonlinear.

To cite an example of nonlinear belief update. In the
Deffuant-Weisbuch (DW) model of pairwise interaction [5],

[6], let V = {1, 2, · · · , n} be a set of social agents in a fixed
and connected communication graph G = (V, E), where E is
the set of edges. Denote by Ni the set of agents (also called
neighbors) connected to agent i in G, i.e.,

Ni = {j ∈ V \ i | (i, j) ∈ E}.
Each individual’s opinion is represented by a real number xj
in a bounded interval. Agents i and j are randomly selected
for interaction, which is assumed to be symmetric, that is, if
i ∈ Nj , then j ∈ Ni. Let Ii[k; τ0] = {j ∈ Ni : |xi[k] −
xj [k]| < τ0}. If j ∈ Ii[k; τ0] and thus i ∈ Ij [k; τ0], then after
the interaction, opinions are updated pairwisely as follows

xi[k + 1] = xi[k] + µ̄(xj [k]− xi[k]) (1)
xj [k + 1] = xj [k] + µ̄(xi[k]− xj [k]),

where µ̄ ∈ (0, 0.5] is called the mixing parameter. Deffuant et
al. in [5] explored this system over a square grid in which
individuals are only connected with their four immediate
neighbors. Weisbuch in [6] extended this simple lattice topol-
ogy to a scale free network topology.

An extension of the DW to multi-alternative decision mak-
ing (decision between multiple alternatives) is proposed in
[8]–[10]. Rather than restricting agents’ opinions to lie in
a bounded (real) interval, each agent’s opinion is treated as
a vector of probabilities xj [0] = [xj1[0], · · · , xjq[0]], in a
probability simplex of q dimension

X =

{
x = [x1, · · · , xq]T

∣∣ q∑
`=1

x` = 1 and x` ∈ [0, 1]

}
;

each element of the opinion vector represents the probability
that a certain alternative is true. Another generalization of
the DW model is the introduction of a state-dependent trust
function µ(d). Although it is similar in spirit to the parameter
µ0 defined in [3]–[7], the trust function µ(d) studied in [9],
[10] is more general and it varies with the squared opinion
distance d between the interacting agents. Clearly, the effect
of µ(d) is time varying since agents’ opinions evolve over
time and its value depends on how distance is defined.

A. Problem Statement

Consider the following squared distance function

d(xi,xj) = ‖xi − xj‖2A = (xi − xj)
TA(xi − xj)

where A ∈ Rq×q is a positive definite matrix. The opinion
space X is bounded with respect to the norm ‖xj‖A :=
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√
d(xj , 0), i.e., supj‖xj‖A < ∞ for ∀xj ∈ X and ∀j ∈

V . Hence, the triangular inequality implies
√
d(xi,xj) ≤

2supi‖xi‖A :=
√
dmax, where supi denotes the supremum

among all i ∈ V . For ease of notation, let dij [k] =
d(xi[k],xj [k]) denote the squared opinion distance after k
network-wide interactions have occurred. Hence, given that
agents i and j are interacting at the (k + 1)th time step, the
opinions are updated as follows:

xi[k + 1] = xi[k] + µ (dij [k]) (xj [k]− xi[k]) (2)
xj [k + 1] = xj [k] + µ(dij [k])(xi[k]− xj [k]) (3)

where µ(d) is called trust function and it satisfies the following
assumption:

Assumption 1:
(a) The trust function µ(d) ∈ [0, 0.5] is a non-increasing

function of the squared opinion distance d.
(b) There exists a threshold τ : ∀d ≥ τ → µ(d) = 0 and

µ(0)
µ(τ−) ≤ β <∞.

(c) The trust function µ(d) is concave and C2-differentiable
for ∀d ∈ (0, τ).

Note that µ(d) models the trust that may exist between
like-minded agents (Assumption 1-a) to reflect the amount of
risk one is willing to take in social interactions. Assumption
1-b is a variation of the bounded confidence model [3]–[7],
i.e., agents have no influence over each other when they are
not like-minded1. Although µ(d) is not restricted to the step-
function in (1), the condition µ(0)

µ(τ−) < ∞ implies that there
has to be a discontinuity of µ(d) at d = τ . The regularity
condition imposed in Assumption 1-c is needed for analytical
reasons (See [9], [10]).

The rate of communication between agents is defined as
follows. Suppose that pi represents the probability of agent
i ∈ V initiating an interaction and it is assumed to be time-
invariant and uniformly distributed, i.e., pi = 1

n . Let Pij [k] be
the probability that agent i chooses to interact with agent j at
the kth time step. Our goal is to design a strategy such that it
maximizes local utility function of agent i. In particular, the
strategy considered in this paper is in the form of probabilities
Pij [k] for ∀j ∈ Ni. Based on this strategy, agent i interacts
with one of the neighbors in Ni, followed by the opinion
update rule given in (2) and (3). At the next time step, the
same procedure is applied. It is to be noted that the rate
of communication Pij [k] initiated by agent i is time-varying
since the optimal strategy changes with time. For notational
simplicity, we omit the time variable k whenever it does not
cause confusion.

B. Organization

In Section II, we begin with a general definition of the
utility function for each agent. The basic idea is that agents
obtain utility from its expected net benefit (i.e., reward minus
cost) of interacting with their neighbors. As there can be

1The system will not change if xi[k] = xj [k], i.e., agents are already in
agreement.

many ways to describe the cost and benefit for interaction,
to get an impression of how the utility function may affect the
opinion formation process, we then introduce two specific cost
functions and analyze their convergent properties, respectively.
In Section III, we present simulation results to validate our
findings.

II. STRATEGIC OPINION FORMATION

There are two steps in modeling strategic interactions for
a network of agents. First, one needs to explicitly model the
incentives that each agent has to interact more or less often
with its neighboring agents. Second, the strategic model should
be tractable so that it can provide insights or predictions on
the formation of the asymptotic opinion profile.

A. Cost and Benefit Functions

We define the following local utility function for agent i:

Ui ([Pij ]j∈Ni) =
∑
j∈Ni

Pij [r(dij)− c(dij , Pij)] (4)

where r(dij) is the benefit or reward agent i receives from
interacting with agent j, c(dij , Pij) represents the cost of
interacting with agent j and [Pij ]j∈Ni

defines the strategy for
agent i.

Let Dij [k + 1] :=
∑n
r=1

∑n
m=r+1 drm[k + 1] be the

sum of the squared distances for all possible pairs of agents
in network, given that agents i and j interacted at k + 1.
Let D[k] =

∑n
r=1

∑n
m=r+1 drm[k] be the sum of squared

distances at time k which is prior to the interaction between
agents i and j. It can be easily checked from (2) and (3) that
the change in D after the interaction equals

Dij [k + 1]−D[k] = −2nρ(dij [k])dij [k]. (5)

where ρ(dij) := µ(dij) [1− µ(dij)]. We call this decrease in
the overall sum of squared distances Dij the social marginal
benefit caused by the interaction between agents i and j and
the change in dij of the interacting pair the agent’s private
marginal benefit, i.e., dij [k+ 1]− dij [k] = −4ρ(dij [k])dij [k].

Notice that the social marginal benefit depends entirely on
the squared opinion distance dij [k] between the two interacting
agents and it is n

2 times as large as the private marginal
benefit. Motivated by this, we set the reward function to be
proportional to the agent’s private marginal benefit, i.e.,

r(dij) = 4αµ(dij)(1− µ(dij))dij = 4αρ(dij)dij ,

where α is called the reward coefficient.
Let us now consider the cost of interaction c(dij , Pij),

which should capture costs in terms of both time and energy.
Formally, we define this cost as follows.

c(dij , Pij) = Pij + ξ(dij)

The first term describes the fraction of time agent i is expected
to spend in interacting with agent j, while the second term
specifies the energy for communicating with agent j whose
opinion is

√
dij away from agent i. Here we present two

interesting constructions of the energy function ξ(dij):



(i) ξ(dij) = γ1dij if dij < τ and ξ(dij) = +∞ if dij ≥ τ
(ii) ξ(dij) = γ2µ

2(dij)dij if dij < τ and ξ(dij) = +∞ if
dij ≥ τ

where γ1 and γ2 are called the cost coefficients associated
with the two energy functions, respectively. The rationale
for the first energy function is that it takes more effort
to convince someone farther away in opinion. Rather than
choosing a linear cost function, we could have chosen a
function of the form c(dij , Pij) = Pij + γ1f(dij)dij where
f(d) is any positive non-decreasing function of d. As will
become evident from the analysis in the next section, the
choice f(d) = 1 does not lead to any loss of generality. In
contrast, the second energy function implies that the amount
of energy spent in interacting with agent j is proportional to
agent j’s squared change in opinion after the interaction, i.e.,
d(xj [k], xj [k + 1]) = µ2(dij [k])dij [k], given that dij is less
than the threshold. In both cases, agents assign infinite energy
to their neighbors who are not like-minded. While detailed
analyses will be presented shortly, each of the two cases will
lead to different opinion formation processes.

B. Local Strategy

Suppose that agent i is chosen at time k. Recall that the
first step in the strategic interaction model is to determine Pij
for ∀j ∈ Ni maximizing the utility function, i.e.,

max
Pij

∑
j∈Ni

Pij [4αρ(dij)dij − ξ(dij [k])]− P 2
ij .

under the constraint that
∑
j∈Ni∪{i} Pij = 1 and Pij ≥ 0.

Solving the above optimization with respect to Pij yields

Pij [k] =
1

Si
[4αρ(dij)dij − ξ(dij [k])]

+ (6)

for ∀j ∈ Ni where Si :=
∑
m∈Ni

[r(dim[k])− ξ(dim)]
+ is

the scaling factor, and [a]+ = a if a > 0 and 0 otherwise.
Hence, it follows from the constructions of the energy func-
tions that Pij = 0 for ∀dij ≥ τ . Moreover, when

Pii[k] =

{
1 if Pij [k] = 0 for ∀j ∈ Ni
0 otherwise. (7)

That is, if interacting with any of its neighbors will bring zero
or negative net benefit (i.e., r(dij)− c(dij , Pij) ≤ 0) to agent
i, then agent i will not interact with anyone for the moment.

C. ODE Approximation of the Distance Dynamic

Let d(k) = E{d(k)} denote the expected squared opinion
distance with respect to the average distribution fk(d) of d.
Using Euler’s approximation, the following ordinary differen-
tial equation (ODE) can be derived

ḋ(t) = −
∑

(i,j)∈E

1

n
(Pij + Pji)ρ(dij(t))dij(t). (8)

See Appendix for the derivation of Eqn. (8).

1) Case Study (i): Consider the case when the energy
function is defined as ξ(d) = γ1d for d < τ and +∞
otherwise.

Assumption 2: The reward coefficient and the cost coeffi-
cient satisfy the relation γ1

α < 4ρ(0).

Note that under Assumption 1-a, the term ρ(d) = µ(d)(1 −
µ(d)) is a non-increasing function of d, with maximum value
ρ(0). When dij < τ , replacing ξ(dij) with γ1dij in (6), we
observe that, if the ratio γ1

α is greater than or equal to the
product 4ρ(0), then γ1

α ≥ 4ρ(dij) for ∀dij . Hence, it follows
from equation (6) that Pij = 0 for ∀j ∈ Ni. This situation
implies that the agents have insufficient incentives to interact
with each other and will always choose to remain inactive, i.e.,
Pii[k] = 1 for ∀k. Thus, Assumption 2 provides a necessary
condition for agents to interact.

A direct result of Assumption 2 is that the rate of interaction
Pij changes over time, depending on the relative distances
between agent i and its neighbors. If the cost of interacting
with an agent exceeds the benefit, then the agent who is to
initiate an interaction will impose a zero rate of interaction
with the agent that causes a negative utility. On the contrary,
more probability weight will be put on the neighbors yielding
higher (positive) utilities. Hence, the probability distribution
of pairwise interactions P ij = 1

n (Pij +Pji) is also dependent
on the opinion distances between the agents. It follows from
(8) and (6) that the dynamic of the expected squared distance
ḋ equals

ḋ = − 1

N

∑
(i,j)∈E

(
1

Si
+

1

Sj

)
[η(dij)]

+
ρ(dij)d

2
ij , (9)

where the scaling factor equals Si = 1 if Pii = 1 and

η(d) =

{
4αρ(d)− γ1 if d < τ
−∞ otherwise.

From (9), one can clearly see that the system stops evolving
(i.e., ḋ = 0) if dij for ∀(i, j) ∈ E satisfies one of the two
conditions: (i) dij = 0; (ii) η(dij) ≤ 0. The first condition is
satisfied if the interacting agents are in consensus. The second
condition implies that agents will not interact if their squared
opinion distance dij belongs to the union D1∪[τ, dmax) where

D1 =
{
d ∈ (0, τ) | 4ρ(d) ≤ γ1

α

}
. (10)

Note that D1 is an empty set when the ratio γ1
α < 4ρ(τ−). In

this case, agents will not update their opinions if their squared
opinion distance dij > τ for ∀(i, j) ∈ E .

On the other hand, as shown in Fig. 1, when the ra-
tio γ1

α ≥ 4ρ(τ−), the set is nonempty and the threshold
τ > inf(D1), where inf denotes the infimum. Since ρ(d)
is an non-increasing function of d, the range of the set D1

goes from inf(D1) to τ . Clearly, for ∀dij ≥ inf(D1), the
associated agents will not update their opinions. The opinion
diffusion in this case will not converge to a consensus not only
because the agents may not be sufficiently like-minded (i.e.,
dij ≥ τ ), but also because γ1

α is too big to warrant sufficient
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Fig. 1: The solid line represents the trust function µ(d) and
the vertical line maps the value of µ such that γ1α = 4µ(d)(1−
µ(d)) to the point d = inf(D1). The “active” region means
that agents will interact if their squared opinion distance dij
falls in this region.

incentives to interact between certain pairs of like-minded
agents whose squared opinion distances belong to the interval
dij ∈ [inf(D1), τ). Hence, inf(D1) represents the effective
threshold under this scenario.

2) Case Study (ii): We now examine the case when the
energy function is defined as ξ(d) = γ2µ

2(d)d for d < τ and
+∞ otherwise. Again, the necessary condition for interaction
is given in the following assumption.

Assumption 3: The reward coefficient and the cost coeffi-
cient satisfy the relation γ2

α ≥
4(1−µ(0))
µ(0) .

It follows from Assumption 1-a that the quotient 1−µ(d)
µ(d) is a

non-decreasing function of d, with a minimum value 1−µ(0)
µ(0) .

Hence, if the ratio γ2
α < 4(1−µ(0))

µ(0) , then γ2
α <

4(1−µ(dij))
µ(dij) for

∀dij . Replacing ξ(dij) with γ2µ
2(dij)dij in equation (6), we

have Pij = 0 for ∀j ∈ {ζ | ζ ∈ Ni and diζ < τ}. This result,
together with the fact that Pij = 0 whenever dij ≥ τ , justifies
the necessary condition in Assumption 3.

We now consider the opinion evolution of a system sat-
isfying Assumption 3. Since ξ(d) = γ2µ

2(d)d for d < τ ,
the dynamic of the expected squared distance ḋ has the same
expression as (9) except that

η(dij) =

{
4αµ(dij)− (4α+ γ2)µ2(dij) if dij < τ
−∞ otherwise.

The system reaches a fixed point if dij for ∀(i, j) ∈ E also
satisfies one of the two conditions: (i) dij = 0; (ii) η(dij) ≤ 0.
Thus agents with different opinions will not interact if dij
belongs to the union D2 ∪ [τ, dmax) where

D2 =

{
d ∈ (0, τ)

∣∣ 4(1− µ(d))

µ(d)
≥ γ2

α

}
. (11)

Or equivalently, dij ∈ (0, sup(D2)] ∪ [0, s2
max).

Clearly, if the threshold τ ≤ sup(D2) is small relative to
the supremum of the set D2, then agents in the network will
not update their opinions because either they are too closed-
minded to the opinions of the other agents or they do not have
sufficient incentives to interact. On the other hand, as depicted
in Fig. 2, if the threshold τ � sup(D2), agents will interact
if their squared opinion distance dij lies in the open interval
(sup(D2), τ). Hence, it can be deduced that the system will

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.5

not like-mindedactive

sup(D2 )

D2

τ

Fig. 2: The solid line represents the trust function µ(d) and
the vertical line maps the value of µ such that γ2

α = 4(1 −
µ(d))/µ(d) to the point d = sup(D2).

form one or multiple opinion clusters. Within each cluster, the
squared opinion distances are upper bounded by sup(D2). And
the squared opinion distances between the clusters are lower
bounded by the threshold τ .

III. NUMERICAL RESULTS

The purpose of this section is to numerically validate the
analytical results presented earlier. Since the choice of the
underlying communication network G is arbitrary and the
analytical results hold for any connected network, we start
by generating G using a random geometric graph (RGG),
i.e., G = G(n, r), consisting of n = 50 randomly distributed
social agents over an unit disk with a radius of communication
r = 0.8. Each initial opinion profile xi[0] for ∀i ∈ V is
uniformly distributed in the opinion space X with q = 3
possible decision states. Without loss of generality, the 2-norm
is used to measure the opinion distance between agents, i.e.,
s(xi,xj) = ‖xi − xj‖A with A = Iq . We define the trust
function to be µ(d) = 0.5− 0.4d2 for ∀d < τ .

Case Study (i): Consider the subgraph Geff [k] = (V, Eeff [k])
of G at each time k, where Eeff [k] contains all the edges
(i, j) ∈ E whose corresponding distances dij [k] are such
that dij [k] < τ if D1 = ∅ and dij < inf(D1) otherwise.
Fig. 3 shows the (normalized) algebraic connectivity of the
graph Geff [k] for k sufficiently large. The plot is averaged
over 400 realizations for different values of τ and inf(D1).
Each realization starts with an uniformly distributed initial
opinion profile. Observe that when inf(D1) is small (i.e.,
γ1/α is large), the agents are less likely to reach a consensus
for all values of τ . In contrast, when inf(D1) is large, i.e.,
inf(D1) > 0.64 approximately, the society tends to form
a convergent opinion almost surely for large values of τ
(approximately above 0.64).

Fig. 3: Phase Transitions for different values of inf(D1)



Case Study (ii): Fig. 4 shows the final outcome of the
interactions (top panel) and the squared distance distribution
(bottom panel) with τ = 0.09 and sup(D2) = 0.0158 (i.e.,
γ2/α = 4.0016.) Observe from the top panel that three
opinion clusters are formed. Within each clusters, the squared
opinion distances are upper bounded by sup(D2) = 0.0158,
as shown in the bottom panel of Fig. 4. Also, the squared
distances between clusters are at least 0.18, which is much
larger than the threshold τ = 0.09. On the other hand, Fig. 5
shows the final outcome of the interactions (top panel) and the
squared distance distribution (bottom panel) when τ = 0.64
and sup(D2) = 0.0158. In this case, agents form a single
opinion cluster as shown in the top panel. Also, the squared
distances within this cluster is upper bounded by 0.012, which
is less than sup(D2).

Fig. 4: Opinion formation when τ = 0.09 and sup(D2) =
0.0158.

Fig. 5: Opinion formation when τ = 0.64 and sup(D2) =
0.0158.

IV. CONCLUSIONS

In this paper, we proposed a strategic communication
scheme. We showed how the opinion formation processes are
affected by the individual incentives behind interactions. In
particular, we explored in detail two specific utility functions
that lead to two different asymptotic opinion patterns.

V. APPENDIX

Proof of Eqn. (8): Let fk(d|A) be the average distribution
of dij [k] conditioned on event A = {(i, j) interacts}, i.e.,

fk(d | A) =
2

n(n− 1)

|V|∑
p=1

|V|∑
l>p

fdpl[k](d | A)

where fdpl[k](d | A) is the conditional distribution of the
squared distance between the pair (p, l). If event A happens,
for sufficiently large n, the value of D[k], say Dij [k] should
be such that

∫
ufk(u|A)du = E{d[k] | A} ≈ Dij [k]

n(n−1)/2 .
Hence, the conditional expectation of the squared distance with
respect to the average distribution can be approximated by the
sample mean:

E{d[k + 1]} =
∑

(i,j)∈E
P ij E {d[k + 1]| | (i, j) interacts}

≈
∑

(i,j)∈E
P ij

Dij [k + 1]

n(n− 1)/2
.

where P ij = piPij + pjPji = 1
n (Pij + Pji). It

then follows from the relation in (5) that E {d[k + 1]} −
E {d[k]} = − 4

n+1

∑
(i,j)∈E P ijρ(dij [k])dij [k]. Using Euler’s

approximation and setting h = 4
n+1 , the following ordi-

nary differential equation (ODE) can be derived ḋ(t) =
−∑(i,j)∈EP ijρ(dij(t))dij(t).
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